Persistence in Phage-Bacteria Communities with Nested and One-to-One Infection Networks

نویسندگان

  • Daniel A. Korytowski
  • Hal L. Smith
چکیده

Abstract. We show that a bacteria and bacteriophage system with either a perfectly nested or a one-to-one infection network is permanent, a.k.a uniformly persistent, provided that bacteria that are superior competitors for nutrient devote the least to defence against infection and the virus that are the most efficient at infecting host have the smallest host range. By ensuring that the density-dependent reduction in bacterial growth rates are independent of bacterial strain, we are able to arrive at the permanence conclusion sought by Jover et al [1]. The same permanence results hold for the one-to-one infection network considered by Thingstad [7] but without virus efficiency ordering. Additionally we show the global stability for the nested infection network, and the global dynamics for the one-to-one network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Nested Infection Networks in Host-Phage Communities Come To Be

We show that a chemostat community of bacteria and bacteriophage in which bacteria compete for a single nutrient and for which the bipartite infection network is perfectly nested is permanent, a.k.a. uniformly persistent, provided that bacteria that are superior competitors for nutrient devote the least to defence against infection and the virus that are the most efficient at infecting host hav...

متن کامل

Mechanisms of multi-strain coexistence in host-phage systems with nested infection networks.

Bacteria and their viruses (bacteriophages) coexist in natural environments forming complex infection networks. Recent empirical findings suggest that phage-bacteria infection networks often possess a nested structure such that there is a hierarchical relationship among who can infect whom. Here we consider how nested infection networks may affect phage and bacteria dynamics using a multi-type ...

متن کامل

Statistical structure of host-phage interactions.

Interactions between bacteria and the viruses that infect them (i.e., phages) have profound effects on biological processes, but despite their importance, little is known on the general structure of infection and resistance between most phages and bacteria. For example, are bacteria-phage communities characterized by complex patterns of overlapping exploitation networks, do they conform to a mo...

متن کامل

Persistence for “Kill the Winner” and Nested Infection Lotka-Volterra Models by Daniel Korytowski A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved November 2016 by the Graduate Supervisory Committee: Hal Smith, Chair

In recent decades, marine ecologists have conducted extensive field work and experiments to understand the interactions between bacteria and bacteriophage (phage) in marine environments. This dissertation provides a detailed rigorous framework for gaining deeper insight into these interactions. Specific features of the dissertation include the design of a new deterministic Lotka-Volterra model ...

متن کامل

Formation of therapeutic phage cocktail and endolysin to highly multi-drug resistant Acinetobacter baumannii: in vitro and in vivo study

Objective(s): Phage therapy is a potential alternative treatment for infections caused by Acinetobacter baumannii, a significant nosocomial pathogen, which has evolved resistance to almost all conventional antimicrobial drugs in poor hygiene and conflicts areas such as Iraq. Materials and Methods: Bacteriophages were isolated to highly resistant isolates of A. baumannii to form therapeutic phag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015